替换
查找内容:
替换为:
全部替换
插入链接
链接网址:
链接显示标题:
请选择网址类型
点我插入链接
插入文件
文件名称:
文件显示标题:
请选择文件类型
点我插入文件
发现错误 发表观点

原文内容

反馈意见

提交 正在提交..... 反馈历史

复制下面的地址分享给好友

确定 正在提交.....
train

你好,

关闭
提交 重做 重新开始 关闭
跳转
  • 新建同级
  • 新建子级
  • 删除
  • 重命名
选择收藏夹
新建收藏夹
公开

取消 确定

1. 基本信息
姓名:
企业:
职位:
联系方式:
邮箱:
2. 请在此填写您的问题,我们将优先安排答疑
提交

报名成功!
课程观看链接如下:
请添加课程助理微信,获得更多信息:
确认
确定
取消 确认

识林

  • 知识
  • 视频
  • 社区
  • 政策法规
    • 国内药监
    • FDA
    • EU
    • PIC/S
    • WHO
    • ICH
    • 英国MHRA
    • 日本PMDA
    • 加拿大HC
    • 澳大利亚TGA
    • 新加坡HSA
    • 瑞士Swissmedic
    • 韩国MFDS
    • 沙特阿拉伯SFDA
    • 巴西ANVISA
  • 研发注册
    • 概览
    • 监管动态
    • 研究专题
  • 生产质量
    • 概览
    • 监管动态
    • 各国GMP
    • 中国GMP
    • 中国GMP指南(第二版)
    • GMP对比
    • 检查缺陷
    • 研究专题
  • 主题词库
  • 帮助中心
  • 关于识林
    • 识林介绍
    • 识林FAQs
    • 功能介绍
    • 团队诊断
    • 联系我们
  • 30天免登录

    忘记密码?

国际药政每周概要:欧盟疫苗临床评估指南,生物类似药可互换性问答,先进疗法学术支持试点;WHO敦促对受污染儿童止咳糖浆采取行动

首页 > 资讯 > 国际药政每周概要:欧盟疫苗临床评估指南,生物类似药可互换性问答,先进疗法学术支持试点;WHO敦促对受污染儿童止咳糖浆采取行动

页面比对

出自识林

国际药政每周概要:欧盟疫苗临床评估指南,生物类似药可互换性问答,先进疗法学术支持试点;WHO敦促对受污染儿童止咳糖浆采取行动
一周回顾
页面比对
笔记

2023-01-31

跳转到: 导航, 搜索

【注册、审评、审批】

01.29【EMA】关于支持欧盟生物类似药可互换性的科学依据的声明的问答

【创新研发与临床】

01.27【EMA】EMA 为学术和非营利的先进疗法(ATMP)开发人员提供增强的支持试点的问答

01.27【EMA】疫苗临床评估指南

【GxP 与检查】

【安全性】

【CMC与仿制药】

01.25【MHRA】Access 联盟下仿制药工作组的任务

【药典相关】

【监管综合】

01.24【WHO】世卫组织敦促采取行动保护儿童免受污染药品的侵害

01.25【MHRA】英国将引入首创的框架使创新药的即时生产更容易

01.25【MHRA】政府对即时生产药品监管支持提案的咨询的回应

【注册、审评、审批】

01.29【EMA】关于支持欧盟生物类似药可互换性的科学依据的声明的问答

问答包括:

Q1.生物类似药的可互换性是否也涵盖了多次转换的情况 - 与转换的频率和所涉及的产品数量无关?
Q2.可互换性(包括Q1中讨论的多种转换的可能性)是否适用于所有类型的生物类似药,例如生物类似药?还有那些分子结构更复杂的?
Q3.EMA-HMA关于生物类似药可互换性的联合声明是否意味着在各成员国允许转换为生物类似药或在生物类似药间转换?

01.26【PMDA】药品 审评报告 新增 Evusheld

01.25【MHRA】欧盟委员会决策信任程序(ECDRP)的延期

01.23【FDA】FDA D.I.S.C.O. Burst 版:FDA 批准 Tecentriq(atezolizumab)治疗不可切除或转移性软组织腺泡状肉瘤,以及 Krazati(adagrasib)治疗 KRAS G12C 突变的局部晚期或转移性非小细胞肺癌

01.23【FDA】基于替代终点的 CDER 药物和生物制品加速批准

【创新研发与临床】

01.27【EMA】EMA 为学术和非营利的先进疗法(ATMP)开发人员提供增强的支持试点的问答

学术支持试点的目标主要是通过为来自学术界的选定申请人在有前景的先进疗法开发过程中提供更多支持,以确保这些产品在质量、安全性和有效性方面符合监管标准并识别和解决申请人可用的现有监管工具和指南中的潜在差距,提高 ATMP 研发到后期研发的转化水平,并最终使药品获得许可。

01.27【EMA】疫苗临床评估指南

指南涉及用于预防传染病的疫苗的临床评价。包括旨在记录新候选疫苗的安全性、免疫原性和有效性以及支持许可疫苗处方信息变更的试验的考虑因素。它还考虑了疫苗有效性研究的必要性和使用。

修订版指南讨论了在计划和解释免疫原性比较试验结果时要考虑的疾病和患者相关因素。在比较含有来自同一生物体不同数量亚型的抗原的候选疫苗和许可疫苗的试验中,应考虑对非共同亚型的免疫应答的解释。

指南还扩展了疫苗有效性试验设计的考虑因素,包括在不同情况下选择合适的对照组。

01.29【EMA】ICH M10 生物分析方法验证和研究样本分析 问答

01.29【EMA】ICH M10 生物分析方法验证和研究样本分析 政策法规

01.27【EMA】CTIS 评估时间线 内容更新

01.23【FDA】指南定稿 大麻和大麻衍生化合物:临床研究的质量考量

【GxP 与检查】

01.27【EudraGMDP NCR】印度 Bda Health Care Private Limited

01.24【FDA】警告信 美国 Larkin Community Hospital Institutional Review Board

01.24【FDA】警告信 美国 North American Custom Laboratories, LLC dba FarmaKeio Superior Custom Compounding

01.24【FDA】警告信 美国 Buzzagogo, LLC

【安全性】

01.23【ICH】E2B(R3)指导原则:个例安全性报告(ICSRs)的电子传输问答

01.20【PMDA】药品 PMDA 风险沟通 更新

【CMC与仿制药】

01.25【MHRA】Access 联盟下仿制药工作组的任务

Access 联盟由澳大利亚 TGA、加拿大卫生部、新加坡 HSA、瑞士 Swissmedic 以及英国 MHRA 组成。其下仿制药工作组的特别关注点是与仿制药相关的问题。仿制药工作组的目标是提高注册过程的效率;促进监管趋同和技术数据要求的协调;建立机构之间的信任;和提供用于制定“惯常操作”的工作共享协议数据。仿制药工作组还旨在通过使用专用资源提供适当水平的监管监督来执行稳健的评估。

01.25【WHO】修订 异烟肼/利福平 BE 指南

01.25【WHO】修订 异烟肼/吡嗪酰胺/利福平 BE 指南

01.25【FDA】仿制药计划月度和季度活动报告(2023财年)页面更新

01.25【FDA】MAPP 5220.1 Rev.1 接收和处理已获批 ANDA 的自愿撤销请求

01.23【WHO】新增4篇 BE 指南

【药典相关】

01.27【EDQM】能力验证计划(PTS)的替代选择

01.29【美国药典】国家处方集 (USP–NF) 更新

01.27【EDQM】欧洲儿科处方集:单糖浆(不含防腐剂)各论发布

01.27【EDQM】实施欧洲药典增补11.2 - 给 CEP 持有人的通知

【监管综合】

01.24【WHO】世卫组织敦促采取行动保护儿童免受污染药品的侵害

在对受污染的止咳糖浆发布多次警报之后,世界卫生组织(WHO)于 1 月 23 日发布通告,呼吁各国采取紧急行动,以预防、发现和应对伪劣医药产品事件。由于这些并非孤立事件,WHO 呼吁参与医药供应链的各主要利益相关方立即采取协调一致的行动。详见资讯:WHO 敦促各国制药商和监管机构对受污染止咳糖浆采取紧急行动。

01.25【MHRA】英国将引入首创的框架使创新药的即时生产更容易

01.25【MHRA】政府对即时生产药品监管支持提案的咨询的回应

MHRA 表示,英国将成为首个引入量身定制的框架来监管在患者接受护理时生产的创新产品的国家。

新框架将确保创新生产不存在监管障碍,并且通过这些途径生产的产品与传统药品具有相同的安全性、质量和有效性保证。在此之前,MHRA进行了公众咨询,听取了英国和国际上一系列个人和组织的意见。在描述他们使用POC产品的经历时,反馈者强调迫切需要为这些重要且多样化的产品建立监管框架。

为了实施这一框架,英国正在制定新的立法以修订人用药品和临床试验立法,并将于今年晚些时候提交议会。MHRA也将与利益相关者一起开始制定指南,以配合新的框架,并将在适当的时候发布。

01.27【FDA】指南草案 使用基于风险的个体问题评估供者资格以降低通过血液和血液制品传播人免疫缺陷病毒的风险的建议

01.27【FDA】FDA 提议对献血进行个人风险评估,同时继续保障美国血液供应

01.27【WHO】世卫组织更新用于应对辐射和核紧急情况的关键药物清单

01.26【FDA】FDA 宣布 Evusheld 目前未被授权在美国进行紧急使用

01.26【WHO】四方组织成立了抗菌素使用和耐药性综合监测技术组

01.26【FDA】COVID-19 药品和非疫苗生物制品紧急使用授权 页面更新

01.25【WHO】世卫组织新研究:使用即时 HCV 病毒载量测定实现更易获取、更贴近社区的丙肝诊断

01.25【PMDA】监管信息 部级命令 页面更新

01.24【WHO】更新了加强结核病实验室实用手册以支持实施 WHO 推荐的诊断方法

01.24【FDA】FDA 综述:2023年01月24日

01.23【WHO】进口国针对人类大流行病和其他公共卫生紧急情况疫苗的授权和授权后活动的监管准备指南

识林-Acorn

识林®版权所有,未经许可不得转载

A study of protective efficacy is not feasible if the disease to be prevented does not occur at
present (e.g. smallpox) or occurs at too low a rate for a study to be performed in a
reasonable timeframe (e.g. anthrax, brucellosis, Q fever).

A study of protective efficacy is not feasible if the disease to be prevented occurs in
unpredictable short-lived outbreaks that, even if large numbers are affected, do not allow
enough time to accrue sufficient cases for an assessment of vaccine efficacy (e.g. some viral
haemorrhagic fevers).

If a study of protective efficacy is not necessary and/or not feasible, the applicant should provide
scientific justification in the Clinical Overview. In such cases, the applicant should also provide a
detailed description of the post-authorisation studies that are planned to evaluate vaccine effectiveness
(see section 4.2.2).

If a study of protective efficacy is considered necessary and feasible, the applicant should provide a
detailed description of the study design in the Clinical Overview. The design of the study will be
influenced by the incidence and characteristics of the infectious disease that is to be prevented. The
study should be designed to provide a reliable estimate of vaccine efficacy with sufficient precision
and should be conducted in a population that is representative of the target population for the vaccine.

The study should be designed to evaluate the protective efficacy of the vaccine against the disease(s)
to be prevented. The primary efficacy variable should be based on a pre-defined case definition (see
below). The study should also evaluate the protective efficacy of the vaccine against other clinically
relevant endpoints (e.g. infection, severe disease, hospitalisation and death). The study should
evaluate the duration of protection and the need for booster doses (see section 4.1.1).

The study should be designed to evaluate the protective efficacy of the vaccine in various subgroups of
the study population (e.g. age groups, ethnic groups, previous immunisation histories). The study
should also evaluate the protective efficacy of the vaccine against various strains/serotypes of the
infectious agent.

The study should be designed to evaluate the safety of the vaccine in the study population. The study
should also evaluate the immunogenicity of the vaccine in a subset of the study population (see section
4.1.1).

  • Randomised controlled trials

The most reliable method for evaluating the protective efficacy of a vaccine is a randomised
controlled trial (RCT). The study should be designed to minimise bias and confounding. The study
should be conducted in a population that is representative of the target population for the vaccine.

The study should be designed to evaluate the protective efficacy of the vaccine against the disease(s)
to be prevented. The primary efficacy variable should be based on a pre-defined case definition (see
below). The study should also evaluate the protective efficacy of the vaccine against other clinically
relevant endpoints (e.g. infection, severe disease, hospitalisation and death). The study should
evaluate the duration of protection and the need for booster doses (see section 4.1.1).

The study should be designed to evaluate the protective efficacy of the vaccine in various subgroups of
the study population (e.g. age groups, ethnic groups, previous immunisation histories). The study
should also evaluate the protective efficacy of the vaccine against various strains/serotypes of the
infectious agent.

The study should be designed to evaluate the safety of the vaccine in the study population. The study
should also evaluate the immunogenicity of the vaccine in a subset of the study population (see section
4.1.1).



  • Secondary attack rate studies

Secondary attack rate (SAR) studies are sometimes used when the infection to be prevented is known
or expected to be associated with a relatively high incidence of secondary cases. In these studies, an
assumption is made that vaccinees and non-vaccinees have an equal chance of acquiring the infection
from the index case. The preferred design would be to randomise the direct contacts, and sometimes
secondary contacts, of a case on an individual basis to receive or not receive the candidate vaccine.
Alternatives could include randomising individuals to immediate or delayed vaccination or randomising
all the members of each ring to the same arm, i.e. a cluster-randomised approach.

  • Populations for analysis

The primary analysis should be based on the intent-to-treat (ITT) population, defined as all randomised
subjects who receive at least one dose of study vaccine. The analysis should also be performed in the
per-protocol (PP) population, defined as all randomised subjects who complete the study according to
the protocol. The analysis should also be performed in various subgroups of the study population (e.g.
age groups, ethnic groups, previous immunisation histories).

  • Clinical endpoints

The primary efficacy variable should be based on a pre-defined case definition (see below). The study
should also evaluate the protective efficacy of the vaccine against other clinically relevant endpoints
(e.g. infection, severe disease, hospitalisation and death). The study should evaluate the duration of
protection and the need for booster doses (see section 4.1.1).

  • Case definition

The case definition should be based on clinical signs and symptoms typical of the infectious disease
together with laboratory confirmation of the aetiology. The laboratory methods used to confirm the
diagnosis should be pre-defined and justified. If there are commercially available tests, the choice of
laboratory method(s) should be based on the reported performance characteristics (i.e. the sensitivity
and specificity of the assay and whether it is deemed suitable for the trial population). In some cases,
there may be interest in selecting an assay that can detect additional pathogens that may co-infect with
the target pathogen and possibly affect the severity or course of the disease. It may also be necessary
to apply additional assays to detect such organisms if this is considered important for interpretation of
the trial results.

On occasion, such as when there are no commercially available tests available with satisfactory
performance characteristics, it may be appropriate to use experimental laboratory methods for
establishing the presence of infection. In such cases, every effort should be made during the clinical
development programme to evaluate the sensitivity, specificity and reproducibility of the methods
used. If the case definition is based on histological findings, the criteria for staging and progression
should be pre-defined in the protocol and it is recommended that there is a quality control system in
place and/or secondary readings conducted at an expert central laboratory facility.

If an organism causes disease of variable severity or a range of clinical presentations (e.g. life-
threatening invasive infections as well as localised infections) the clinical features of the case definition
should be selected in accordance with the proposed indication(s). In these instances, separate efficacy
trials using different case definitions may be necessary to support specific indications (e.g. prevention
of invasive pneumococcal disease vs. prevention of pneumococcal otitis media). In addition, for some
vaccines it may be important to compare the severity of vaccine breakthrough cases with cases that
occur in the control group to determine whether prior vaccination ameliorates or possibly enhances
the severity of the disease.



  • Case detection

It is usual that there is active case ascertainment at least up to the time of conduct of the primary
analysis. If there is to be further follow-up after the primary analysis the decision to switch to passive
case ascertainment should consider the importance of obtaining reliable estimates of vaccine efficacy
in the longer term and information on the characteristics of cases that occur in previously vaccinated
and unvaccinated subjects over time.

When the primary endpoint is laboratory-confirmed clinical disease, the protocol should list the clinical
signs and/or symptoms that trigger contact between trial subjects and trial site staff or designated
healthcare facilities participating in the trial so that appropriate laboratory testing can be conducted to
confirm the case. Regular personal or non-personal contact with trial staff may also be used to
determine whether there have been any recent clinical signs or symptoms of potential relevance and to
determine whether cases may have been missed. If any cases bypass the designated trial healthcare
facilities and present elsewhere, attempts should be made to retrieve available data that could be used
to establish whether the case definition was met.

If the primary endpoint is not a clinically manifest infection, trial visits should be sufficiently frequent
to obtain the laboratory data of importance. Every effort should be made to minimize numbers that are
lost to follow-up and to conduct trial visits within protocol-defined windows.

4.2.2. Vaccine effectiveness

Estimates of vaccine effectiveness reflect direct (vaccine induced) and indirect (population related)
protection during routine use. Vaccine effectiveness may be estimated from studies that describe the
occurrence of the disease to be prevented in the vaccinated target population over time. For example,
these may be observational cohort studies, case-control or case-cohort studies. Alternatively,
effectiveness may be estimated from data collected during phased (e.g. in sequential age or risk
groups) introduction of the vaccine into the target population and on occasion, using other study
designs, disease surveillance networks or disease registries.

Vaccine effectiveness studies are not always necessary but may be particularly useful in some
situations and/or to address certain issues, including but not limited to the following:

  • Authorisation was based on nonclinical efficacy data and a comparison of immune responses
    between protected animals and vaccinated humans and/or on a human challenge trial;

  • It is not known how long protection will last after the primary series and/or after post-primary
    dose(s);

  • It is proposed to use the data collected to address long-term protection to support
    identification of an ICP;

  • There are unanswered questions regarding the efficacy of a vaccine against a wide range of
    pathogen subtypes;

  • There are scientific reasons to suspect that an estimate of vaccine efficacy documented in a
    pre-authorisation trial may not be widely applicable to other populations (e.g. to subjects who
    are resident in different endemic or non-endemic regions);

  • Different vaccine implementation strategies are in use in different countries or regions that
    may impact on the estimate of vaccine effectiveness (e.g. when introduction of routine use in
    infants is accompanied by a catch-up programme in older subjects and the upper age of the
    catch-up). In these instances, estimates of vaccine effectiveness obtained using different
    strategies can inform the optimal strategy to achieve rapid and efficient control of the disease;

  • There is reason to suspect that widespread use of a vaccine could result in a change in the
    subtypes of a pathogen causing disease compared to the pre-vaccination era.



Vaccine effectiveness studies require a suitable infrastructure to be in place for case ascertainment and
confirmation of cases in accordance with clinical and laboratory criteria and it may not be possible to
obtain reliable data in all countries or regions. In addition, for some infectious diseases an estimate of
vaccine effectiveness is possible only in case of a naturally occurring epidemic or a deliberate release
of a pathogen in the context of bioterrorism. Furthermore, the conduct of a vaccine effectiveness study
requires that a policy decision has been made to vaccinate a sufficiently large population to support the
analysis.

Whenever it is perceived that valuable information could be gained from conducting a vaccine
effectiveness study it is important that plans are in place to enable its initiation whenever a suitable
opportunity arises in the post-authorisation period.

The role of the licence holder in designing vaccine effectiveness studies and specifying the target of,
and the population for analysis, generating protocols, and collecting and analysing the data requires
consideration on a case by case basis. In most cases, unless the incidence of the infectious disease is
very high in some regions so that a relatively small and short study is possible, a study sponsored by
the licence holder is not a practical undertaking. The only feasible way to evaluate vaccine
effectiveness is often from studies put in place by public health authorities when initiating large
vaccination programmes. Nevertheless, licence holders have a responsibility to ensure that relevant
data made available to them and/or reported in the literature from non-sponsored studies are reported
to EU Competent Authorities. Consideration should be given to updating the SmPC if the results have
clear implications for the advice given (e.g. on the need for additional doses to maintain protection).

4.3. Special considerations for vaccine development

4.3.1. Immune interference

  • Vaccines that contain more than one antigen

The inclusion of multiple antigens in a vaccine may lead to immune interference (i.e. enhancement or
suppression of immune responses to one or more of the antigens). The potential for immune
interference should be evaluated in clinical studies that compare immune responses to the individual
antigens when given separately and when given as components of the combined vaccine. The design
and interpretation of such studies must be tailored to the antigens involved and should take into
account any relevant experience about the possible effects of their combination.

  • Concomitant administration of vaccines

The concomitant administration of vaccines may lead to immune interference (i.e. enhancement or
suppression of immune responses to one or more of the antigens). The potential for immune
interference should be evaluated in clinical studies that compare immune responses to the individual
antigens when given separately and when given concomitantly. The design and interpretation of such
studies must be tailored to the antigens involved and should take into account any relevant experience
about the possible effects of their co-administration.

For some vaccines, such as those intended for the primary series in infants, it may be necessary to
ensure that all subjects in a clinical trial receive all the required antigens before reaching a certain age.
To address this need, trials may need to compare concomitant administration with separate
administrations made in a staggered fashion (e.g. to compare concomitant administration at 2 and 4
months with administration of routine infant vaccines at 2 and 4 months and the candidate vaccine at
3 and 5 months). In older age groups, it is more likely possible to find populations in which coadministration can be compared with separate administrations since it may be less critical to achieve
protection against all antigens in a short timeframe. For some types of vaccine, such as those generally
given before travel, it would also be important to assess immune interference at the most concentrated
schedule that might be needed.



If any co-administration studies identify important reductions in immune responses, further trials could
explore the minimum dose interval that does not lead to any impact.

4.3.2. Cross-reacting immune responses

The immune response to an antigen may cross-react with antigen(s) of one or more other species or
subtypes within a species. The potential for cross-reacting immune responses should be evaluated in
clinical studies that compare immune responses to the individual antigens when given separately and
when given as components of the combined vaccine or when given concomitantly. The design and
interpretation of such studies must be tailored to the antigens involved and should take into account
any relevant experience about the possible effects of their combination or co-administration.

4.3.3. Using different vaccines to prime and to boost

The use of different vaccines to prime and to boost may lead to immune interference (i.e.
enhancement or suppression of immune responses to one or more of the antigens). The potential for
immune interference should be evaluated in clinical studies that compare immune responses to the
individual antigens when given as a homologous prime-boost regimen and when given as a
heterologous prime-boost regimen. The design and interpretation of such studies must be tailored to
the antigens involved and should take into account any relevant experience about the possible effects of
their combination or co-administration.

4.3.4. Vaccine lots and lot-to-lot consistency studies

The manufacturing process for vaccines is complex and may lead to variability in the final product. The
potential for variability should be evaluated in clinical studies that compare immune responses to the
individual antigens when given as components of different lots of the vaccine. The design and
interpretation of such studies must be tailored to the antigens involved and should take into account
any relevant experience about the possible effects of lot-to-lot variability.

A lot-to-lot consistency trial is not routinely required but may be considered useful under certain
circumstances that should be considered on a case by case basis. If such a trial is conducted it is
important to consider and justify the number of lots to be compared and the method of lot selection
(e.g. consecutively produced or chosen at random). Careful consideration needs to be given to the
primary immune response endpoint and the pre-defined acceptance criteria.

It is recommended that several lots of the candidate vaccine with a formulation comparable to that of
the final product intended for marketing should be tested during the clinical development programme.
If this is not possible due to late stage manufacturing changes, the sponsor should justify the
relevance of the clinical trial data to the lots intended for marketing based on quality attributes and/or
should conduct a clinical comparison between lots.

4.3.5. Bridging studies

Bridging studies may be used to extrapolate data from one population to another (e.g. from adults to
children, from one ethnic group to another, from one geographical region to another). The design and
interpretation of such studies must be tailored to the antigens involved and should take into account
any relevant experience about the possible effects of the population differences.

4.3.6. Circumstances in which approval might be based on very limited data

In some circumstances, it may be possible to generate only very limited data for new vaccines intended
to prevent rare infections that carry considerable morbidity and mortality. The extent of the data that
might be acceptable to support a marketing authorisation requires consideration on a case by case
basis. Applicants are advised to seek scientific advice from EU Competent Authorities at an early
stage.

4.4 Clinical safety and pharmacovigilance requirements



The extent of the safety data that can be provided pre-authorisation will depend on the overall content
of the clinical development programme, such as whether or not protective efficacy studies have been
performed. There are also some special considerations for the collection of vaccine safety data
depending on such factors as route of administration, recording of solicited signs and symptoms in
addition to all other adverse events, definitions of some adverse events and the determination of their
relationship to vaccination. Detailed guidance on post-authorisation vaccine pharmacovigilance will
be provided in a separate guideline.

REFERENCES (SCIENTIFIC AND / OR LEGAL)

  1. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on
    the Community code relating to medicinal products for human use, as amended.

  2. Commission Directive 2003/63/EC of 25 June 2003 amending Directive 2001/83/EC of the
    European Parliament and of the Council on the Community code relating to medicinal products
    for human use.

  3. Note for Guidance on Clinical Evaluation of New Vaccines (CPMP/EWP/463/97).

  4. Note for Guidance on Preclinical Pharmacological and Toxicological Testing of Vaccines
    (CPMP/SWP/465/95).

  5. Note for Guidance on the Choice of the Non-Inferiority Margin (CHMP/EWP/2158/2005).

  6. Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins
    as Active Substance: Non-Clinical and Clinical Issues (EMEA/42832/2005).

  7. Note for Guidance on Statistical Principles for Clinical Trials (CPMP/ICH/363/96).

  8. Note for Guidance on Planning Pharmacovigilance Activities (CPMP/ICH/5716/03).

  9. Note for Guidance on Clinical Safety Data Management: Definitions and Standards for
    Expedited Reporting (CPMP/ICH/377/95).

  10. Note for Guidance on General Considerations for Clinical Trials (CPMP/ICH/291/95).

  11. Note for Guidance on Clinical Investigation of Medicinal Products in the Paediatric
    Population (CPMP/ICH/2711/99).

  12. Note for Guidance on Studies in Support of Special Populations: Geriatrics (CPMP/ICH/379/95).

  13. Note for Guidance on Influenza Vaccines (CPMP/BWP/214/96).

  14. Note for Guidance on Live Recombinant Viral Vaccines (CPMP/BWP/3088/99).

  15. Note for Guidance on Validation of Analytical Procedures: Text and Methodology
    (CPMP/ICH/381/95).

  16. Note for Guidance on Missing Data in Confirmatory Clinical Trials (CPMP/EWP/1776/99).

  17. Note for Guidance on Switching between Superiority and Non-Inferiority (CPMP/EWP/482/99).

  18. Note for Guidance on Multiplicity Issues in Clinical Trials (CPMP/EWP/908/99).

  19. Note for Guidance on Application with 1. Meta-Analyses 2. One Pivotal Study (CPMP/EWP/2330/99).

  20. Note for Guidance on Adjustment for Baseline Covariates in Clinical Trials (CPMP/EWP/2863/99).

  21. Note for Guidance on Investigation of Subgroups in Confirmatory Clinical Trials
    (CPMP/EWP/3094/02).

  22. Reflection Paper on Methodological Issues in Confirmatory Clinical Trials Planned with an
    Adaptive Design (CHMP/EWP/2459/02).

  23. Guidance on Format of the Risk-Management Plan (RMP) in the EU – in Integrated Format
    (EMEA/192632/2006).

  24. Note for Guidance on Risk Management Systems for Medicinal Products for Human Use
    (EMEA/CHMP/96268/2005).

  25. Note for Guidance on Good Pharmacovigilance Practices (GVP) (EMEA/813938/2005).

  26. Note for Guidance on Good Pharmacovigilance Practices (GVP) Annex I - Definitions
    (EMEA/876333/2006).

  27. Note for Guidance on Good Pharmacovigilance Practices (GVP) Module V – Risk Management
    Systems (EMEA/838713/2005).

适用岗位:

  • 必读岗位:生物分析实验室人员(Bioanalytical Scientist),药物代谢与药代动力学研究(DMPK),质量保证(QA)。

工作建议:

  • Bioanalytical Scientist:确保在方法开发和验证过程中遵循ICH M10指南的要求,特别是在选择性、专属性、准确度、精密度和稳定性方面。
  • DMPK:在非临床和临床研究中应用ICH M10指南,以确保研究样品的生物分析数据质量和一致性。
  • QA:监控生物分析方法的验证过程,确保所有步骤符合ICH M10的要求,并为监管提交准备相应的文件。

适用范围:
本文适用于化学药品和生物药品的生物分析方法验证,包括创新药和仿制药,原料药和成品药,适用于在欧盟进行监管提交的大型药企和Biotech公司。

要点总结:

  1. 方法验证目的:明确生物分析方法验证的目的是证明其适用于预期用途,并确保数据质量和一致性。
  2. 选择性和专属性:强调在生物分析方法验证中评估选择性和专属性,以确保方法可在存在潜在干扰物质时准确测量分析物。
  3. 校准曲线和范围:规定了校准曲线的建立和验证过程中对校准标准品和QCs的准确度和精密度要求。
  4. 稳定性评估:要求对样品制备、处理、分析的每个步骤以及储存条件进行稳定性评估,确保不影响分析物浓度。
  5. 再分析和交叉验证:提供了研究样品再分析和交叉验证的指导,以证明报告数据的关联性和可比性。

以上仅为部分要点,请阅读原文,深入理解监管要求。

适用岗位及建议:

  • RA(注册):必读。应熟悉欧盟生物类似药可互换性的科学依据,以便在注册申报过程中准确解释和应用相关要求。
  • QA(质量管理):必读。需了解生物类似药的可互换性原则,确保产品质量和合规性。
  • 研发:必读。在开发生物类似药时,应考虑欧盟对生物类似药可互换性的要求,以满足监管标准。

适用范围:
本文适用于欧盟批准的生物类似药,包括具有复杂分子结构的生物类似药,适用于Biotech、大型药企、跨国药企等企业类别。

文件要点总结:
欧盟EMA-HMA联合声明支持生物类似药的可互换性,涵盖多个产品间的多次转换情况,只要转换发生在具有相同参照产品的一组产品内或参照产品与其生物类似药之间。全面的比较性研究降低了转换的负面后果,且在某些欧盟成员国已有实践,未发现对患者疗效或安全性的影响。可互换性声明涉及活性成分和制剂产品,不包括不同给药设备处理的潜在问题或医生和患者对生物类似药的看法。所有生物类似药需确保可追溯性,以便在发生不良反应时进行适当的根本原因分析。欧盟的监管和科学要求旨在满足分子复杂性差异带来的挑战,允许所有欧盟批准的生物类似药的可互换性。关于生物类似药的转换或自动替代是否被允许,由各成员国自行决定,EMA不规定处方实践或发布临床指导。

以上仅为部分要点,请阅读原文,深入理解监管要求。

适用岗位:

  • 注册(RA):必读。需了解FDA对于大麻及其衍生化合物在临床研究中的法规要求,以便在新药申请(NDA)或简化新药申请(ANDA)过程中确保合规性。
  • 研发(R&D):必读。在开发含有大麻或大麻衍生化合物的药物时,需遵循FDA的质量标准和监管要求。
  • 临床(Clin):必读。在进行临床试验时,需确保所用药物符合FDA的监管标准,包括大麻及其衍生化合物的质量控制。
  • QA:必读。需监督和确保临床研究中使用的药物符合FDA设定的质量标准和控制状态。

工作建议:

  • 注册(RA):在准备NDA或ANDA时,特别注意大麻及其衍生化合物的法律定义和监管控制,确保所有提交的信息符合FDA的要求。
  • 研发(R&D):在药物开发过程中,重视大麻及其衍生化合物的一致性制造和质量控制,遵循FDA推荐的行业指南。
  • 临床(Clin):在设计临床试验方案时,考虑大麻及其衍生化合物的控制状态和潜在滥用风险,确保试验设计符合FDA的监管框架。
  • QA:在质量保证过程中,特别关注大麻及其衍生化合物的批次一致性和质量测试,确保符合USP和ICH等相关指南。

适用范围:
本文适用于含有大麻或大麻衍生化合物的化学药物,包括创新药和仿制药,由美国FDA发布,适用于Biotech、大型药企、跨国药企等。

要点总结:
FDA的这份指南提供了关于大麻及其衍生化合物在人类药物开发中临床研究的质量考量。强调了任何含有大麻或其衍生化合物的产品,如果声称具有治疗效果或与疾病相关的其他声明,都被视为药物,并必须符合FDA的市场前批准要求。指南明确了大麻和大麻衍生化合物的法律定义和监管控制,指出含有超过0.3% delta-9 THC的大麻衍生化合物仍然是受控物质。强调了在IND申请中需包含关于原料、中间产品和成品中delta-9 THC含量的定量数据。此外,指南还提到了在NDA审查过程中可能需要评估这些产品的滥用潜力,并据此进行药物分类或重新分类。指南鼓励与DEA沟通,以了解大麻或大麻衍生材料的控制状态,并在IND阶段收集必要的数据,以便在NDA提交时提供完整的数据包。

以上仅为部分要点,请阅读原文,深入理解监管要求。

适用岗位:

  • RPM(Regulatory Project Managers):必读。负责接收和处理ANDA自愿撤销请求,应熟悉MAPP 5220.1 Rev.1中的政策和程序,确保按照规定流程操作。

适用范围:
本文适用于美国FDA监管下的化学仿制药(ANDA),由OGD(Office of Generic Drugs)的RPM处理,适用于Biotech、大型药企、跨国药企等企业类别。

文件要点:

  1. ANDA撤销流程:明确了ANDA持有者如何根据21 CFR 314.150(c)提交ANDA自愿撤销请求,并由OGD RPM接收和处理。
  2. 法律义务持续:在ANDA批准撤销生效前,ANDA持有者仍需遵守相关法律和监管要求,包括上市后报告要求和支付所需费用。
  3. 状态更新:ANDA在FDA电子监管跟踪系统中保持“获批”状态,直至联邦公报(FR)发布通知声明ANDA批准被撤销。
  4. 撤销请求处理:OGD RPM将处理自愿撤销请求和任何尚未生效的自愿撤销请求的撤销请求。
  5. 撤销请求的撤销:如果ANDA持有者在FR通知发布前请求撤销撤回请求,RPM将起草同意撤销的信函;如果请求在FR通知发布后但撤销生效前提出,FDA将发布更正通知。

以上仅为部分要点,请阅读原文,深入理解监管要求。

岗位必读建议:

  • QA(质量保证):关注药典通告更新和药典论坛更新,确保公司产品符合最新的USP标准。
  • R&D(研发):在新药开发过程中,参考USP-NF介绍和USP与FDA相关内容,确保研发流程和产品质量符合规定。
  • Production(生产):依据USP-NF的具体要求,调整生产流程和质量控制标准。
  • Regulatory Affairs(注册事务):密切关注修订公告和中期修订声明,及时更新注册文件和策略。

文件适用范围:

本文适用于所有在美国市场销售的化学药品和生物制品,包括创新药和仿制药。发布机构为美国药典(USP),企业类别包括Biotech、大型药企、跨国药企以及CRO和CDMO等。

要点总结:

  1. 药典通告更新:强调了药典通告的及时性,包括一般公告、修订意向通知和出版物更正。
  2. 药典论坛:提供了公众评议的平台,包括提议的中期修订声明和常规修订。
  3. 修订公告:作为药典标准最快的修订途径,解决紧急问题,如病人安全性和纠正重要错误。
  4. 中期修订声明:加速修订的形式之一,解决重要性次于修订公告的议题。
  5. 勘误:纠正印刷错误,不具有广泛影响。

以上仅为部分要点,请阅读原文,深入理解监管要求。

取自“https://login.shilinx.com/wiki/index.php?title=%E5%9B%BD%E9%99%85%E8%8D%AF%E6%94%BF%E6%AF%8F%E5%91%A8%E6%A6%82%E8%A6%81%EF%BC%9A%E6%AC%A7%E7%9B%9F%E7%96%AB%E8%8B%97%E4%B8%B4%E5%BA%8A%E8%AF%84%E4%BC%B0%E6%8C%87%E5%8D%97%EF%BC%8C%E7%94%9F%E7%89%A9%E7%B1%BB%E4%BC%BC%E8%8D%AF%E5%8F%AF%E4%BA%92%E6%8D%A2%E6%80%A7%E9%97%AE%E7%AD%94%EF%BC%8C%E5%85%88%E8%BF%9B%E7%96%97%E6%B3%95%E5%AD%A6%E6%9C%AF%E6%94%AF%E6%8C%81%E8%AF%95%E7%82%B9%EF%BC%9BWHO%E6%95%A6%E4%BF%83%E5%AF%B9%E5%8F%97%E6%B1%A1%E6%9F%93%E5%84%BF%E7%AB%A5%E6%AD%A2%E5%92%B3%E7%B3%96%E6%B5%86%E9%87%87%E5%8F%96%E8%A1%8C%E5%8A%A8”
上一页: ECA污染控制策略模板(示例)更新
下一页: 美国_FDA_加入国际合作调查受污染的止咳糖浆来源
相关内容
相关新闻
  • 国际药政每周概要:FDA 修订 ...
  • 国际药政每周概要:FDA 创新...
  • 国际药政每周概要:FDA 仿制...
  • 国际药政每周概要:FDA REMS...
  • 国际药政每周概要:FDA IT战...
热点新闻
  • 2025年全球主要监管机构药品法...
  • 近期重点483和警告信概要,识...
  • 创新药的中美双报
  • 从2025看2026:制药业 AI 应...
  • 在附录22框架下,将“人在回路...

 反馈意见

Copyright ©2011-2026 shilinx.com All Rights Reserved.
识林网站版权所有 京ICP备12018650号-2 (京)网药械信息备字(2022)第00078号
请登录APP查看
打开APP